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Tracing heavy metals in ‘swine 
manure - maggot - chicken’ 
production chain
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With the development of large-scale livestock farming, manure pollution has drawn much attention. 
Conversion by insects is a rapid and cost-effective new method for manure management. Swine manure 
conversion with maggots (Musca domestica larvae) has developed, and the harvested maggots are often 
used as animal feed. However, the flow of heavy metals from manure to downstream processes cannot 
be ignored, and therefore, heavy metal content was measured in untreated raw manure, maggot-
treated manure, harvested maggots and maggot-eating chickens (chest muscle and liver) to evaluate 
potential heavy metal risks. The levels of zinc, copper, chromium, selenium, cadmium and lead had 
significant differences between untreated raw manure and maggot-treated manure. The concentrations 
of all detected heavy metals, except for cadmium and selenium, in maggots met the limits established 
by the feed or feed additive standards of many countries. The bioaccumulation factor (BAF) of heavy 
metals decreased with the increase of the maggot instar, indicating that heavy metals were discharged 
from the bodies of maggots with the growth of maggots. Also, the contents of overall heavy metals in 
chickens fed harvested maggots met the standards for food. In conclusion, regarding heavy metals, it is 
eco-safe to use maggots in manure management.

Manure management has become an important part of environmental protection1–3. Livestock production gener-
ates approximately 1400 million tons of manure annually in the European Union (EU)4 and excess manure pro-
duced can be used as a resource. To date, widely employed technologies involve fertilizer treatment, energization, 
and compressive processes5. In many countries, for example, in France6, 7, animal manures are mainly used as 
organic fertilizers for agricultural production because of their abundant nutrient compositions, such as nitrogen 
(N), phosphorus (P) and potassium (K). However, several substances contained in manure that are harmful to 
human safety as well as ecosystems (heavy metals, antibiotics and pathogens) limit this development6, 8–11. Cang 
et al.1 detected high concentrations of heavy metals (Zinc (Zn), copper (Cu), chromium (Cr), cadmium (Cd), 
lead (Pb), nickel (Ni) and arsenic (As)) in swine manure, and these levels were much higher than those in feeds 
of Jiangsu Province, China1. Researchers also found that heavy metals would enter into the environment from 
manure, and the levels of Cu, Zn, As, Cd and Cr in manure increased rapidly from 1990 to 2010, especially in 
pig and poultry manure12, 13. In addition, the application of swine manure, which contains high levels of NPK, 
to agricultural production without treatment leads to eutrophication14. It is reported that the land application of 
manure can cause N leaching, ammonia (NH3) volatilization, and nitrous oxide (N2O) emission15–18. A survey of 
groundwater NO3

−-N concentrations showed that up to 55% of 394 groundwater samples on the North China 
Plain exceeded the WHO drinking water standard of 11.3 mg N L−1 for NO3

−-N19. Although a large portion of 
manure produced has been applied back to the field as fresh or dried fertilizer, manure remains an important 
source of pollution. Relatively harmless, improved resource utilization solutions for manure management are 
needed for the sustainable development of livestock farming.
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A rapid, cost-effective method of manure management is conversion by insects. Many insects can reduce the 
volume of the manure and transform it into high-quality fertilizer20. The housefly (Musca domestica) is consid-
ered a good candidate for use in manure management. A specific weight ratio of neonate maggots is added to 
fresh swine manure, and after 7 days under ambient conditions, all the late instar maggots (near pupation) are 
separated from the manure manually by gradually removing the surface manure with a broom because of their 
negative phototaxis21. In a previous study, the total weight of manure reduced 1.12 ± 0.10 kg per day when treated 
with 1 kg maggots during vermicomposting, and an 80.2% reduction in moisture22. Moreover, the microbial 
activity, observed as basal respiration, in maggot-treated manure decreased by 35%, and the microbial diversity 
decreased from 2.57 in raw manure to 1.77 on the Shannon index22. Zhu et al. (2015) also found the total N, P and 
K content in maggot-treated organic fertilizer was 10.72% (dry weight), which was higher than that in organic 
fertilizer produced by conventional composting with bulking agents (approximately 8.0%)21. The insects can be 
harvested afterwards and used as animal feed23–25. Zhu et al. (2015) dried the fresh maggots harvested from 
manure using microwave equipment and measured the nutrient contents, 55.32 ± 1.09% protein was contained 
in the dried maggots, which included 1.34 ± 0.02% methionine and 4.15 ± 0.10% lysine21, indicating that larval 
feeding had converted organic waste into a highly valuable protein that can be used as a substitute for fishmeal. 
This waste treatment technology may contribute to a reduction of the animal protein shortage in the animal feed 
market, but there are potential risks associated with these harvested insects, including allergens, chemical hazards 
(heavy metals, toxins, veterinary drugs, hormones and others), and biological hazards (bacteria, viruses, para-
sites, fungi, prions), which are not yet well understood5. The environmental pollutants could be transferred from 
different substrates to farmed insects and then to farmed animals through the food chain, so risk assessments of 
the pollutants should be performed before the insects used as feed.

One of the main limiting factors in the use of manure compost is the concentration of heavy metals26. Heavy 
metals are widespread in animal feeds, faeces, and in vivo. Liu et al.27 detected arsenobetaine (AsB), dimethylars-
inic acid (DMAV) and monomethylarsonic acid (MMAV) (30.99, 1.32 and 1.14 µg/kg, respectively) in chicken 
breasts after the animals were fed with basal diets that had trace concentrations of AsB (0.03–0.1 µg/g), arsenate 
(AsV; 0.04–0.1 µg/g), and DMAV (0.03–0.04 µg/g)27. The effect of a metal element on an organism is related to its 
properties. Elements such as selenium (Se), Cu, and Zn are essential in trace quantities for the maintenance of 
cellular processes. However, other metallic elements (Cd and Pb) and metalloid As may have no function within 
the body or may even be harmful to human health28. In order to improve production efficiency in the livestock 
production, the addition of different heavy metals in the animal feed is a common method. Cu (mostly in the 
form of copper sulphate) is commonly used as a footbath in milking yards to treat lameness in dairy cattle and 
as a growth promoter in pig and poultry systems29. Zn (mostly in the form of zinc oxide) is added to pig feeds as 
a “cure-all” for scour. Only 50 mg/kg addition is beneficial for poultry growth, feather and skeletal development 
as well as reproduction30. Meanwhile ingestion of Cd-contaminated substances may affect the function of major 
organs such as the brain, kidneys, liver, spleen and testes in an in vivo murine model31–33. Tyrrell et al.34 treated 
rats with 0.05% w/v Pb acetate in their drinking water for 8 weeks and found that the rats developed induced 
fasting hyperglycaemia34. Elements that have entered into organisms can also be biotransformed to other com-
pounds, with resulting changes in toxicity. Yang et al.35 detected N-acetyl-4-hydroxy-m-arsanilic acid (N-AHAA), 
inorganic arsenite (AsIII), dimethylarsinic acid (DMAV), 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA), 
arsenate (AsV), monomethylarsonic acid (MMAV), and 3-nitro-4-hydroxyphenylarsonic acid (ROX) in chicken 
litter even though the feed only contained ROX35. The ability of organisms to adapt to heavy metals is limited, 
biological function will be destroyed if excessive heavy metals are ingested. For security reasons, all countries 
have developed standards for heavy metals in manure, fertilizer and feed, and products whose heavy metal levels 
exceed the standards will be banned from use in agricultural production.

To assess the potential risk of heavy metals transformed by maggots in swine manure and the possibility 
of harvested maggots being made into feed for livestock farming, we converted swine manure using maggots 
according to a specific weight ratio, and the harvested maggots were then utilized for feeding chickens. In the 
process, the swine manure, maggots, chickens and chicken faeces were randomly sampled for detection of heavy 
metals (Zn, Cu, Cr, Cd, Pb, Ni, As and Se). In addition, to compare the ability of different ages of maggots to con-
vert heavy metals, we calculated the bioaccumulation factors (BAF) of heavy metals in different ages of maggots. 
Oral ingestion is the primary route of contaminant uptake by animals36, and the subsequent bioaccumulation 
refers to both bioconcentration and biomagnification37. Thus, the bioaccumulation factor (BAF) is developed by 
calculating the concentration of a pollutant in an organism divided by its concentration in the organism’s diet38, 39.

Results
Heavy metal levels in manure. The results revealed intriguing differences between the heavy metal levels 
of raw manure and maggot-treated manure (Fig. 1), with remarkably lower levels of Zn, Cu, Cr, Se, and Cd found 
in the maggot-treated manure compared to the raw manure. The content of Cr in the manure was reduced by 
40 percent after maggot conversion, but no significant difference in Ni content was found. The level of As in the 
manure also did not change before and after maggot conversion. Unexpectedly, lead (Pb) was condensed in the 
maggot-treated manure.

Heavy metal transferred to maggots. Some heavy metals were found to be present in M. domestica 
larvae (Fig. 2). From 3 to 5 days old, the heavy metal content per unit of body mass decreased as age increased. 
Except for Se, five-day-old larvae exhibited the lowest heavy metal levels, and larvae of different ages exhibited 
strong differences in the content of Zn, Cu, As, and Cr. The levels of Cd, Pb, and Ni between 3-day-old and 
4-day-old larvae were not strikingly different but were significantly higher than in 5-day-old larvae.
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Bioaccumulation factors (BAF) of maggots. Younger larvae had higher heavy metal BAF (Table 1). 
The 3-day-old and 4-day-old larvae exhibited high BAF for Cd (1.20 and 1.10, respectively), while the 5-day-old 
larvae exhibited <1 BAF for Cd. The BAF was very low for Cr (BAF = 0.25–0.03) and Ni (BAF = 0.29–0.03) and 
remained >1 (1.21–1.32) for Se.

Heavy metals in chicken faeces. The trends of heavy metal levels in the faeces of chickens were not quite 
consistent with the increased usage of maggots (Fig. 3). Based on the results of our experiment, the levels of Cd, 

Figure 1. Heavy metal levels in swine manure before and after maggot conversion. RSM means raw swine 
manure; TSM means maggot-treated swine manure; data are presented as the means ± SEM (n = 3); the p value 
represents the significant differences; and values were analysed by Student’s t-test.

Figure 2. Heavy metal levels in maggots of different ages (days) fed swine manure. The mass represents the 
average content of heavy metals in maggots of different ages; the different letters on each line indicate the 
significant differences between treatments at P < 0.05 during different ages in days.
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Se, Pb and Cu in chicken faeces increased significantly when more maggots were used for chicken feeding. The 
levels of elements Zn and As didn’t change and the levels of Ni and Cr even decreased when maggot use increased 
from 0% to 10% in the chicken feed. However, for the overall elements, the average levels in the 15% treatment 
groups were higher than those in the 10% treatment groups. Comparing the data with the contents of heavy 
metals in raw manure (Fig. 1) found that the Zn, Cu, Cr and Ni levels were significantly reduced, and in contrast, 
higher concentrations of As, Pb, Se, Cd were detected in chicken faeces fed with 15% maggot meal than in raw 
manure.

Heavy metal in the meat (chest muscles) and livers of chicken. We detected very low heavy metal 
concentrations in the meat and livers of chickens fed with 15% maggot meal harvested from swine manure 
(Fig. 4). The levels of Zn, Cu, Se, and Cd were much higher in the liver than in the meat, but there were no signif-
icant differences in the contents of Cr, Ni, As, and Pb.

Discussion
Many heavy metals accumulate in animal manure. In our study, the concentrations of Zn and Cu (538.29 mg/
kg and 151.11 mg/kg, respectively) in raw manure were significantly higher than that of Cr, Ni, As, Pb, Se, and 
Cd (10.64 mg/kg, 9.27 mg/kg, 1.56 mg/kg, 2.12 mg/kg, 1.95 mg/kg, and 0.27 mg/kg, respectively). Similar results 
were found in research by Sager (2007); the median Cu and Zn contents in swine manure were 282 and 1156 mg/
kg, respectively, in Austria, but the contents of Se, As, Cd, Cr, Ni, and Pb were lower with median values of 3.37, 
0.88, 0.46, 6.9, 12.5, and 1.9 mg/kg40, respectively. After manure was treated with maggots in our experiment, 
we were pleased to find most concentrations of selected heavy metals (Zn, Cu, Cr, Se, and Cd) decreased, with 
values of 422.91, 108.85, 6.34, 1.24 and 0.16 mg/kg, respectively. No significant differences were found in As and 
Ni with values of 1.66 and 6.37 mg/kg, respectively. What was puzzling was that higher level of Pb (3.78 mg/kg) 
was detected in the maggot-treated manure, indicating that maggots have little ability to transform Pb in manure. 
Diener et al.38 reported higher Pb concentrations in the larval exuviae than in the larvae or their feed, indicating 
that Pb is sequestered in the exoskeleton of the black soldier fly (Hermetia illucens)41. Vijver et al.42 also found the 
Pb concentration in the body of Tenebrio molitor was far lower than in their feed42. We suspect that only a little 
Pb was absorbed by the maggots and the excess Pb was quickly returned to the environment through moulting 
or excretion, so the content of Pb in the manure increased with the decrease of manure quality. The contents of 
heavy metals (Zn, Cu, Cr, Cd, Pb, Ni and As) in the composting process have been detected in previous work by 
Han et al. (2008), who found that the overall content of heavy metals, except for As, increased in animal manure 
after 63 days of composting43. The concentrations of Cr, Ni, Cu, Zn, Cd, Pb and As were 12.9, 10.9, 465.7, 656.7, 
1.09, 38.2 and 21.8 mg/kg, respectively, compared to 8.0, 9.2, 185.2, 194.4, 0.52, 11.1 and 28.0 mg/kg, respec-
tively, in raw manure43. Additional results were found in the work of Li et al.44, where the content of Cu bound 
to organic matter in swine manure increased from 60% to 75% after transit through the gut of earthworms, 
whereas Zn decreased from 50% to 25%44. Comparing the concentrations of these heavy metals in swine manure 
after maggot conversion to the standards established by China, Canada (Table 2), and some European countries 
(Table 3)45, 46, all the heavy metal levels met the national standards except those of Cu and Zn (Cu < 100 mg/kg 
and Zn < 400 mg/kg in Germany). In conclusion, maggots can effectively transform the heavy metals in swine 
manure, especially Zn, Cu, Cr, Se, and Cd. Although the contents of Ni and As in swine manure could not be 
reduced with maggot treatment, the transformation efficiency was higher than that of natural compost.

In the current study, the contents of the heavy metals in the maggots decreased rapidly with larval develop-
ment, especially from 4 days old to 5 days old, except for that of Se (Fig. 2). Previous studies found that there 
are various metabolic immune responses in insects responsible for the detoxification of heavy metals. When 
Spodoptera litura were exposed to a range of Zn concentrations, the expression of the metallothionein (MT) gene 
was significantly positively correlated with the accumulation of Zn in the midgut47. Filipiak et al.48 found that 
a high concentration of Zn in the cytoplasm of Drosophila melanogaster haemocytes induces programmed cell 
death via a mitochondrial pathway and that caspases play a pivotal role in this process48. Wu and Yi (2015) 
analysed the effects of Cr and Pb on immune and antioxidant systems in Galleria mellonella and found that 
the activity of antioxidant enzymes (superoxide dismutase, peroxidase and catalase) significantly increased with 
increasing concentrations of dietary Cr and Pb49. Consequently, the BAF of all of the heavy metals decreased as 
the maggots grew. Distinct from the other heavy metals, the reductions in the BAF of Cd and Se were not obvious, 
and no Cr and Ni bioaccumulation was observed in 5-day-old maggots (Table 1). Similar results have been found 

Heavy metals
Day-age
3 4 5

Cr 0.25 0.19 0.03
Cu 0.81 0.66 0.23
Zn 0.77 0.66 0.35
As 0.50 0.45 0.17
Cd 1.20 1.10 0.90
Pb 0.65 0.55 0.19
Ni 0.29 0.26 0.03
Se 1.26 1.32 1.21

Table 1. Heavy metal bioaccumulation factors (BAF) in maggots fed with swine manure.
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regarding chickens fed with black soldier flies, Hermetia illucens, with the feed containing low concentrations of 
Cd, Pb, and Zn. The decrease in the BAF of Cd with the growth of the larvae was not significant in contrast to 
Pb and Zn38. Outcomes of our work indicated that the ability of maggots to accumulate heavy metals decreased 
with their growth. The heavy metal concentrations in insects were related to their growth stage and heavy metals 
previously absorbed could still be discharged from the bodies of maggots.

Figure 3. Heavy metal concentrations in the faeces of chickens fed with maggot meal. The x-axis in all plots 
shows the proportions of maggots added into the feed (0%, 5%, 10% and 15%). CK represents meal feed for 
chickens without maggot addition. Data are means ± SEM (n = 3). Different letters on each column indicate 
significant differences between treatments at P < 0.05 during different groups.
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Comparing the concentrations of heavy metals in the harvested maggots used in the chicken feed in this study 
to the standards for animal feed in China, Canada, and the European Union (Table 2), the contents of Cu, Cr, As, 
Cd and Pb in the maggots met the standards in China, while the contents of Se and Cd exceeded the standards 
in China (Se < 0.5 mg/kg)50–54. The results indicated that the levels of heavy metals among the harvested maggots 
were distinctly lower than in the living environment, and regarding these five metals, these maggots would be safe 
to be used as feed.

Due to the contents in the chicken faeces (Fig. 3), we can conclude that the metabolic capacities of different 
heavy metals in chickens are diverse. Our results indicated that chickens have better excretion capacity for Cd, 
Se, Cu and Pb, with higher excretions in faeces with greater contaminant intake. On the other hand, the ability of 

Figure 4. Heavy metal concentrations in the meat (chest muscle) and livers of chickens fed with 15% maggot 
meal harvested from swine manure. Data are presented as the means ± SEM (n = 3), and the p value represents 
the significant differences analysed with an ANOVA test.

Heavy metal limits Zn Cu Cr Ni As Se Pb Cd
In fertilizer
Chinaa — — 150 — 15 — 50 3
Canadab 500 100 210 62 13 2 150 3
In animal feed
European Union (EU)c — — — — 2 — 5 0.5
Chinad — 35 10 — 2 0.5 5 0.5
Canadae — — — — 8 — 8 0.4
In human food
European Unionf — — — — — — 0.1/0.5i 0.05/0.5
WHO/FAOg — — — — — — 0.1/0.5 —
Chinah — — 1 — 0.5 — 0.2/0.5 0.1/0.5

Table 2. Heavy metal limits in fertilizer, animal feed and human food (mg/kg). ‘—’ means the standard of 
relevant heavy metal concentration have not been stipulated. aSource: Standard for microbial organic fertilizers, 
NY 884–2012, China, 2012. bSource: Compost quality standards, Brinton W, 2000. cSource: EU standards for 
arsenic, cadmium, lead, nitrites, volatile mustard oil and harmful botanical impurities, No 1275/2013, EU, 2013. 
dSource: Standard for feeds, GB 13078–2001, 2001 and standard for copper as well as selenium (GB 26418–
2010) in feeds, 2011. eSource: Standard for feeds, Canadian Food Inspection Agency, 2015. fSource: Standard for 
foodstuffs (No 1881/2006 and No 629/2008), EU. gSource: Standard for contaminants and toxins in the GSCTFF, 
FAO/WHO, 2011. hSource: Standard for contaminants in foodstuffs (GB 2762–2012), 2012. iHeavy metal limit 
in meat/liver.



www.nature.com/scientificreports/

7Scientific RepoRts | 7: 8417  | DOI:10.1038/s41598-017-07317-2

chickens to excrete Ni, Cr, Zn and As is insufficient. Almost constant amount of Zn and As excretion or reduced 
of Ni and Cr excretion were calculated in our experiment meaning that the metabolic system might have been 
destroyed. Fortunately, overall concentrates of heavy metals in the faeces of chickens fed with 10% maggots, met 
the standard limits of fertilizer of Canada45, but the results remind us to strictly control the contents of Zn, As, Ni 
and Cu in chicken feed.

The liver is an important metabolic organ that is involved in detoxification. In our study, we found that the 
contents of Zn, Cu, Cd, and Se in the livers of chicken fed with feed containing 15% maggots were significantly 
higher than those in the meat (chest muscle), but for Cr, Ni, As and Pb, the concentrations were not significantly 
different (Fig. 4). We surmised that the livers contained more efficient mechanisms to metabolize Zn, Cu and Se 
since they are essential elements for life, and Cd might be processed in a similar way due to its similar location 
in the periodic table compared with Zn. For the other four elements (Pb, Cr, As and Ni), they don’t have similar 
properties. The contents of the heavy metals, Cr, As, Pb, and Cd, in the meat of chickens fed with 15% maggot 
meal harvested from swine manure, were 0.525, 0.003, 0.031, and 0.003 mg/kg, respectively, and those in the liver 
were 0.345, 0.02, 0.038, and 0.019 mg/kg. All the levels of the detected heavy metals met the standard limits of 
China, the European Union, and FAO/WHO52–58.

We concluded that insects can facilitate a decrease in the contents of some heavy metals in manure and that 
all the levels of heavy metals in maggot-treated manure met the standard limits in fertilizer. In addition, the 
harvested mature larvae are safe to be used as animal feed and provide abundant nutrients for their high protein 
content. The heavy metal species and their concentrations in insects depend on the manure substrate and the 
insect growth stage, which may subsequently affect higher trophic levels.

Methods
Conversion of swine manure by maggots. Manure was collected from a pig breeding farm at the 
Huazhong Agricultural University (30°29′N, 114°22′E). Musca domestica flies were incubated at 26 ± 2 °C and 
60% relative humidity (RH) in a cubic cage (60 cm × 50 cm × 40 cm) with a photoperiod of 13:11 (L:D) h. Sugar, 
water, and milk powder were provided starting from first adult emergence. The eggs that were laid by the adult 
flies were collected along with the swine manure and wrapped with cloth, and one gram of eggs was moved 
into a breeding box (65 cm × 40 cm × 15 cm) with four kilograms of swine manure. Five-day-old maggots were 
harvested, starved for 12 h, weighed, and dried at 60 °C for the chicken feeding experiment, while maggots at 3, 
4, and 5 days of age, raw manure, and maggot-treated manure were sampled for heavy metal analysis, with each 
experiment being replicated 3 times.

Chicken trial. One-day-old chickens were purchased from the hatcheries of the Guangdong Wen Group, 
located in Jiangxia, Wuhan (29°58′N, 113°42′E). Maggot meal was added to the chicken feed as an alternative 
protein source at 0%, 5%, 10%, and 15% of the total protein. Seven-day-old chickens with an average weight of 
58.26 ± 0.17 g were starved for 4 h to empty their digestive tracts. Eighty-four chickens were randomly allocated 
to the 4 dietary treatments, which were replicated 3 times, to study the effect of including maggots harvested 
from swine manure in the diet on the heavy metal content of chickens and chicken manure. Chicken manure was 
collected daily and combined for heavy metal analysis, and after seven weeks, the meat (chest muscle) and livers 
of the chicken fed with 15% maggot meal were sampled for heavy metal analysis.

Ethics statement. All methods were carried out in accordance with the guidelines approved by Huazhong 
Agricultural University. All animal experiments were performed under the guidelines of the Committee on the 
Ethics of Animal Experiments of Biological Studies Animal Care and Use Committee in Hubei Province.

Metal analysis. The samples (maggots at 3, 4, and 5 days of age starved for 8 h, and the meat and livers of 
chickens at 43 days of age) were washed with deionised water, weighed, dried to measure the dry weight, and then 
ground in an agate mortar for heavy metal analysis. The manure samples (raw swine manure, maggot-treated 
swine manure, manure from chickens fed with maggot meal) were treated in the same manner except for the 
washing. Sample pre-treatment was conducted following the method of Diener et al. (2015)19. Samples were ana-
lysed through an inductively coupled plasma mass spectrometry (ICP-MS, Agilent 7700 series, USA).

Statistics. Statistical analyses were performed using SPSS Statistics 19.0 software (SPSS Inc., Chicago, IL, 
USA). Student’s t-test was used to analyse the significant differences in the heavy metal content between the raw 
swine manure and the maggot-treated manure and between the meat and livers of the chickens fed 15% maggot 

Zn Cu Cr Ni As Pb Se Cd
Austria 1000 400 150 100 — 500 — 4
Belgium 1000 100 150 50 — 600 — 5
Denmark — — — 45 25 120 — 1.2
France — — — 200 — 800 — 8
Germany 400 100 100 50 — 150 — 1.5
Italy 500 300 100 50 10 140 — 1.5
Spain 4000 1750 750 400 — 1200 — 40

Table 3. Heavy metal limits in fertilizer established by some European Union countries (mg/kg). ‘—’ means the 
standard of relevant heavy metal concentrations have not been stipulated.
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meal. ANOVA was used to detect statistically significant differences in the heavy metal content among the mag-
gots of different ages. The BAF was calculated according to Walker (1990) as follows:

=BAF Concentration in organism(C )
Concentration in ingested food and/or water (C ) (1)

i

0

In this research, C0 represented the concentration of heavy metals in the swine manure, and Ci represented the 
concentration of heavy metals in the harvested larvae.
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